13th ESAC SAS Workshop 10th – 14th June 2013

The Reflection Grating Spectrometers

Based on presentations given by A. Pollock with inputs from the RGS team

Rosario González-Riestra

XMM-Newton SOC FSAC

The Reflection Grating Spectrometers

resolution @ 1 keV:

EPIC-pn 10 EPIC-MOS 14

High resolution spectroscopy!

RGS 200 1st order 400 2nd order

The RGS instrument

Some views of RGS...

The 182 Gratings

The 9 CCDs

RGS Optical Design

 $\cos \beta = \cos \alpha + m \lambda / d$

 $\lambda = (\cos \beta - \cos \alpha) d/m$

The RGS CCDs

One of the RGS CCDs

RGS Cooling in November 2002

RGS modes

Two modes:

- Spectroscopy (+ Q)
- Small Window
 (for very bright objects, reading only ¼ of the FOV)

For each event:

- Time
- Position on the detector
- Energy

RGS performance

	RGS 1 1 st order	RGS 2 1 st order	RGS 1 2 nd order	RGS 2 2 nd order
Effective area @15 Å (cm²)	61	68	15	19
Resolution @15 Å	250 1200 km/s 60 mÅ	215 1400 km/s 70 mÅ	430 700 km/s 35 mÅ	375 800 km/s 40 mÅ
Wavelength range	5 – 38 Å		5 - 20 Å	
Wavelength accuracy	6 mÅ		5 mÅ	
Time resolution (Spec, 8 CCDs)	4.8 s	9.6 s	4.8 s	9.6 s
Time resolution (SW, 8 CCDs)	1.2 s	2.4 s	1.2 s	2.4 s

Pile-up in RGS

RGS observations of **very bright** sources may show the effects of **pile-up**, the arrival of more than one X-ray photon in one pixel before it is read out.

Pile-up effects in bright continuum sources is important for cases with integrated fluxes within one CCD above $\sim 2 \cdot 10^{-10}$ erg cm⁻² s⁻¹.

Only s ~ 20 objects with fluxes higher than that are identified in the ROSAT All Sky Survey.

The effects of pile-up on spectra are:

- migration of photons from first to higher orders.
- rejection of events with complicated patterns by the on-board processing.
- the effects of pile-up are more acute in RGS2, due to the longer readout time.

Pile-up can be mitigated by reducing the accumulation time:

- reading fewer CCDs
- reading the most brightly illuminated CCDs more often
- using the RGS Small Window mode
- a combination of these

The Instrumental Response

- MirrorGratingCCDpre launch
- + empirical correctionsin flight
 - The line spread function and the wavelength scale
 - The effective area

RGS line-spread function components

Response to monochromatic radiation

RGS observed LSF and resolving power

RGS wavelength scale (σ ~6 mÅ)

Corrections for Solar Angle dependence and Heliocentric velocity

-30

-20

0

Shift (mÅ)

10

20

30

-30

-20 -10

0

Shift (mÅ)

10

30

20

30

The Effective Area

- Pre-launch and in flight measurements
- Empirical corrections:

Beta dependent correction for RGS1

- High orders correction
- Time correction
- Instrumental edges:
 - Al (8.3 Å)
 - Mg (9.5 Å)
 - F (18.3 Å)
 - Mg₂F (17.9 Å)
 - O (23.5 Å)

13th SAS Workshop, ESAC, 11 June 2013

RGS1 - RGS2 broadband comparison

Systematic differences between instruments

RGS order-to-order correction

Systematic differences between orders

RGS instrumental Oxygen edge

Additional Oxygen layer on the detectors

RGS contamination

Increasing Carbon contamination

RGS SAS and the CCF components

Current Calibration Files

SAS (rgsproc) tasks

BORESIGHT MISCDATA ADUCONV BACKGROUND BADPIX

CALSOURCEDATA CLOCKPATTERNS

COOLPIX CROSSPSF

CTI

DARKFRAME EFFAREACORR

EXAFS

HKPARMINT LINCOORD

LINESPREADFUNC MODEPARAM QUANTUMEF

REDIST SAACORR

TEMPLATEBCKGND

atthkgen attfilter hkgtigen rgsoffsetcalc rgssources rgsframes rgsenergy rgsbadpix rgsevents evlistcomb rgsangles rgsfilter rgsregions rgsspectrum rgsbkgmodel rgsrmfgen rgsfluxer rgslccorr

What's next?

Some nice RGS spectra

Comparison with Chandra gratings

Instrumental Trends

